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[1] Reliable estimates of cropped area (CA) in developing countries with chronic food
shortages are essential for emergency relief and the design of appropriate market-based
food security programs. Satellite interpretation of CA is an effective alternative to
extensive and costly field surveys, which fail to represent the spatial heterogeneity at the
country-level. Bias-corrected, texture based classifications show little deviation from
actual crop inventories, when estimates derived from aerial photographs or field
measurements are used to remove systematic errors in medium resolution estimates. In this
paper, we demonstrate a hybrid high-medium resolution technique for Central Ethiopia
that combines spatially limited unbiased estimates from IKONOS images, with spatially
extensive Landsat ETM+ interpretations, land-cover, and SRTM-based topography.
Logistic regression is used to derive the probability of a location being crop. These
individual points are then aggregated to produce regional estimates of CA. District-level
analysis of Landsat based estimates showed CA totals which supported the estimates of
the Bureau of Agriculture and Rural Development. Continued work will evaluate the
technique in other parts of Africa, while segmentation algorithms will be evaluated, in
order to automate classification of medium resolution imagery for routine CA estimation
in the future.
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1. Introduction

[2] In 2001–2003, the Food and Agriculture Organization
(FAO) estimates that 820 million people were undernour-
ished in developing countries [FAO, 2006b]. Contrary to
other regional trends, sub-Saharan Africa has seen a
significant increase in undernourishment from 169 million
people in 1990–1992 to 206 million people in 2001–
2003, representing one-fourth of people suffering chronic
hunger worldwide. Due primarily to economic growth and
significant expansions of per capita food production,
Ethiopia has achieved a significant reduction in the number
of undernourished (17% from 1993–1995 to 2001–2003).
Even so, 15 million Ethiopians face chronic or transitory
food insecurity, with up to 10% of the population facing
food shortages in years of above-average productivity
[FAO, 2006a].
[3] In the past several decades, more proactive and pre-

ventative market oriented strategies for combating food
insecurity in sub-Saharan Africa have gradually replaced
direct food aid, the latter of which is now restricted to
emergency relief [Christensen, 2000; Clay, 2003]. Market

oriented strategies, such as donor export incentives, employ-
ment generation, and work-based food aid, aim to stimulate
economic growth, trade, and agricultural productivity.
[4] Food production, an important indicator of food

security, is the product of the amount of area being cropped
and the yield per cropped area. Cropped area (CA) is a
function of many inputs, including land tenure policy,
rainfall forecasts, and farmer incentives (market forces
and government subsidies). Despite the early successes of
the Large Area Crop Inventory Experiment (LACIE)
[Hammond, 1975; MacDonald et al., 1975, 1980] and the
Agriculture and Resources Inventory through Aerospace
Remote Sensing [Hixson et al., 1981a, 1981b], food
production estimates for many developing African nations
still face significant uncertainty. While simple models of
crop water scarcity [Senay and Verdin, 2001; Verdin and
Klaver, 2002] tend to track well with yield anomalies in
rainfed semi-arid regions of Africa, the CA term of the
production equation is still poorly specified. It is therefore
imperative for effective food security initiatives, as well as
early warning and import planning, that reliable estimates
of CA are made.
[5] Several techniques have been adapted for crop

estimation using aerial photographs and satellite images,
including: pixel count [Bauer et al., 1978; Fang, 1998;
Shao et al., 2001; Sridhar et al., 1994], supervised
classification [Gallego and Rueda, 1993], Bayesian/fuzzy
classification and spectral un-mixing [Gorte and Stein,
1998; Quarmby et al., 1992], and area frame sampling
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[Gallego, 1999; Pradhan, 2001]. Pixel count is dependent
on classification accuracy, which is limited by the presence
of mixed pixels, colocation inaccuracy, and the spatial
correlation between training sites and test sites. Further-
more, classification techniques and spectral un-mixing are
highly sensitive to the variance among categories and
correlation between spectral bands. The presence of mixed
pixels induces significant errors, particularly in developing
countries, where small subsistence farms adjoin unculti-
vated areas [Ozdogan and Woodcock, 2006]. Location and
interpretation error are limitations of area frame sampling
as well, however several applications involving unbiased
estimators (ground survey or high resolution aerial
photos), show little deviation from actual crop inventories
[Gallego, 2004].
[6] The area frame sampling approach has been applied

in a number of ways in agricultural surveys. The general
principle involves a multistage sampling approach where
the scale of segments, or sampling units, at each stage is
different from other stages. Statistical relationships between
the high and medium resolution data are then used to
estimate the CA for the largest unit practical. An example
of a number of surveys performed for various countries with
different stage sampling units was produced by FAO [1998].
In these studies, the segments were political districts, crop
reporting districts, arbitrary areas on a satellite image, a
single farm, or a household. The area frame approach can be
structured to take advantage of available resources to
maximize the amount of information going into the final
statistical estimate. In areas where the execution and mon-
itoring of ground surveys is difficult or the area of study is
large, the use of remotely sensed image segments has a
substantial economic advantage. As a result, several
national/regional organizations use area frame sampling
to estimate CA in Europe and the United States, including:
the USDA Foreign Agriculture Service, Statistics Canada,
European Union Monitoring Agriculture with Remote
Sensing Project, and the Italian AGRIT project. Results
of a study in Hamadan Province, Iran are promising for
developing countries, as area frame sampling using aerial
photos showed an overall accuracy of 99.8% estimation of
annual crop inventories [Pradhan, 2001].
[7] This research developed a hybrid high-medium reso-

lution technique to determine CA for major crop producing
zones in Ethiopia during the 2005 primary growing season
that combines spatially limited, unbiased estimates from
IKONOS satellite images with spatially extensive and low-
cost Landsat ETM+ estimates. The study is unique, as the
bias estimator is developed from area-frame samples of
high spatial resolution satellite images, instead of aerial
photographs or field surveys. A classification model was
developed using logistic regression with spline functions to
capture nonlinear relationships between crop probabilities
and continuous predictors in a generalized additive model
framework. Land-cover derived from the International
Livestock Research Institute woody biomass maps and
the Shuttle Radar Topography Mission (SRTM)-based
elevation and slope were used to refine initial estimates.
District-level estimates of CA matched a set of indepen-
dent estimates quite well. The bias estimator provides a
first estimate for continued annual CA monitoring using

medium resolution satellite imagery, or a methodology for
annual bias estimation.

2. Materials and Methods

2.1. Study Area and Data

[8] Ethiopia is situated along the borders of Djibouti,
Eritrea, Somalia, and Sudan in east-central Africa (33�000–
47�590E longitude and 14�530N–3�240S latitude). The study
area for this project (Figure 1) is the primary crop produc-
tion zone of Ethiopia and is highly contentious, in terms of
national crop production estimates. The terrain of central
Ethiopia is complex, as several irregular mountain ranges
(highest point = 4385 m) on the Ethiopian plateau are split
from northeast to southwest by the Great Rift Valley (lowest
point = 603 m). Central Ethiopia has three main seasons,
driven primarily by the interaction of terrain with the north-
south movement of the Intertropical Convergence Zone:
Belg (February–May), Kiremt (June–October), and the dry
Bega (November–January) seasons. The region receives
1094 mm of rainfall on average each year, with more
occurring in the Kiremt season (157 mm/mo) and less in
the Belg season (63 mm/mo). The dominant field crops
(cereals and grains) and pulses are sown at the end of the
Belg season and harvested at the end of the Kiremt season,
while secondary crops (e.g., potatoes and yams) are sown at
the beginning of the Belg season and harvested at the
beginning of the Kiremt season [FAO, 2006a].
[9] High and moderate resolution images were provided

by the USGS EROS Data Center in Sioux Falls, SD.
Seventeen one meter panchromatic IKONOS images strat-
ified over three 30 m Landsat 7 ETM + scenes were used to
determine bias in Landsat CA. The remaining five Landsat
scenes were used to estimate CA using the bias estimator.
Images were relatively cloud free (<1% cloud cover) and
registered in a Lambert Equal Area Azimuthal projection
(datum WGS-84). IKONOS images were taken during
various stages of crop development in the Kiremt season
(May, June, July, and October of 2006), while Landsat
images were taken at the end of the growing season
(October and November of 2005). The timing of Landsat
images facilitated classification, as emergent crops and
harvested plots were characteristically different from other
photosynthetic vegetation, while crops and other photosyn-
thetic vegetation were easily discernable in the high reso-
lution images throughout the growing season. Data
constraints limited the acquisition of high resolution imag-
ery for 2005. Given the extent and timing of rainfall, the use
of more fertilizer and improved seeds, and lack of major
disease outbreaks or pests, 2005 and 2006 represented
bumper harvests in Ethiopia [FAO, 2006a]. It was therefore
assumed that the annual difference in CA for these 2 years
was negligible. Colocation error in Landsat and IKONOS
images was compensated for by performing analysis on
multipoint areas, where the points represent an estimate of
areal characteristics.
[10] Slope and elevation were determined from the

mosaics of the SRTM 90 m digital elevation model
(DEM) for Africa. Post-processing of the SRTM DEM
was performed by FAO-SDRN (Environmental and Natural
Resources Service). Land-cover information was collected
from the International Livestock Research Institute multi-

D14112 HUSAK ET AL.: SATELLITE IMAGE CROP ESTIMATION

2 of 8

D14112



purpose woody biomass database for Ethiopia, a harmo-
nized compilation of land cover maps and corresponding
attribute tables. The product was developed from satellite
interpretation, national forest inventories, general forest
assessments, and biomass studies for the year 2000. The
maps contain unique geometric units linked to attribute
tables with information on the percentage and type of
primary and secondary land cover.

2.2. Area Frame Analysis

[11] Manual interpretation of the digital imagery was
performed using the LCMapper tool developed at the USGS
EROS Data Center. The manual interpretation used classic
heads-up techniques incorporating the color (spectral),
shape, texture, shading and pattern information. In the
interpretation process, the grid of points was overlaid on
the digital imagery, appearing as dots on the image. The
LCMapper tool allowed for the selection of dots both
individually or in clusters, and the selected dots could then
be assigned a crop or no-crop attribute code. The scale of
interpretation was dependent on a variety of factors, includ-
ing the complexity of the landscape, the need for contextual
information, and, most importantly, the type of imagery
being interpreted. Classification of Landsat imagery was

performed using composites that enhanced photosynthetic
vegetation (bands 5 = 1.55–1.75 mm, 4 = 0.76–0.90 mm,
and 3 = 0.63–0.69 mm). The crop/no-crop points classified
included elevation and slope from the SRTM data set and a
land-cover class based on the woody biomass data set.
IKONOS imagery and corresponding Landsat images were
related using a high-frequency sampling regime, while
remaining Landsat images used in interpretation of the bias
estimator were sampled at a coarser frequency.
[12] High-frequency sampling consisted of setting up a

regular grid of points at a 500 m interval across the area
covered by the IKONOS imagery. This technique resulted
in over 22,000 noncloud samples, which corresponded to
high-frequency Landsat classification. Comprehensive sam-
pling consisted of a regular grid of points at a 2 km interval
covering the eight Landsat scenes used in this exercise. This
resulted in over 80,000 non-SLC-off samples used in
deriving the district CA estimates.

2.3. Statistical Analysis

[13] Since the response variable (high resolution land
cover) is binary, ordinary linear modeling is not appropriate,
so a related alternative approach, logistic regression, was
used instead. Logistic regression is a type of generalized

Figure 1. Map of available Landsat scenes and generalized landuse map derived from a Regional Land
Management Unit (RELMA) and United Nations Environmental Programme (UNEP) product.
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linear model [McCullagh and Nelder, 1989] that produces
predictions of probabilities for binary response variables.
Specifically, a linear model is used to predict the natural log
of the odds ratio:

log p
�

1� pð Þ

� �
¼ b0 þ

Xk
j¼1

bjxj þ e

[14] Predictions of probabilities are obtained by taking
the exponential of the logit predictions. In this study, p is the
probability that a particular location is being cropped.
[15] Logistic regression works equally well with contin-

uous or discrete predictors, but the basic implementation
does assume linear relationships between continuous pre-
dictors and the log odds ratio. There is reason to expect,
however, that elevation and slope are not linearly related to
the log odds ratio, so the predictor variables were incorpo-
rated into the logistic regression model using flexible
smoothing spline models in a generalized additive model
framework [Hastie et al., 2001].
[16] Skill in classifying individual pixels and in calculat-

ing total number of cropped pixels was estimated using a
randomized cross validation approach. The data set was
repeatedly divided randomly into two subsets, a training set
consisting of 80% of the observations and a test set
consisting of 20% of the observations. Models were fit to
the training set and then applied to the test set to calculate
misclassification error rates and bias and root mean square
error of CA estimates.
[17] Currently, estimates of CA in Ethiopia are produced

by two governmental agencies, the Central Statistics
Authority (CSA) and the Bureau of Agriculture and Rural
Development (BoARD). These agencies utilize different
techniques for estimating CA. The CSA uses statistical
techniques to select a subset of survey locations for deriving
their estimates. In addition, the CSA estimates do not
include large-scale commercial farms. In contrast, the
BoARD has a large network of agents in the field surveying
many farms and aggregating that information to derive their
cropped area estimates. For the Amhara region, the two
agencies have come to a consensus and agreed on a
common estimate of cropped area in this region [FAO,
2006a]. Typically, the BoARD reflects a higher CA than
the CSA. For all the regions provided in the FAO 2006 Crop
and Food Supply Assessment Mission, the BoARD estimate
of CA is over 25% greater than the estimate provided by
CSA at the national level. The BoARD estimates were
chosen to compare to model output, as they are used
annually for needs assessment by the World Food

Programme and include CA for large-scale and newly
settled farms, and plots on slopes steeper than predefined
limits of viable crop production [FAO, 2006a]. The area-
weighted average of these estimates resulted in a CA
percent for each district, which was then multiplied by the
area of the district to arrive at the CA for the district.

3. Results

[18] Five land-cover classes comprised nearly 84% of the
high-frequency points, with the other 16% being dispersed
among 15 land-cover classes. Because of this, the five
dominant classes (cultivated few stocks, cultivated light
stocks, cultivated moderate stocks, dense shrubland, and
grassland few stocks) were placed into individual catego-
ries, while the remaining 15 classes found in the land-cover
map were combined into an ‘‘other’’ class. The study area is
comprised primarily of sparse cropland and grasses (culti-
vated few stocks = 32.3% and grassland few stocks = 32.0%).
Cultivated light stocks, cultivated moderate stocks, dense
shrubland, comprise 8.9%, 4.7%, and 5.7% of the remaining
land area respectively. The overall accuracy of predicted
crop and not crop for the moderate resolution classification
with ‘‘truth’’ (high resolution classification) was 71.2%.
Omission errors were lower for agriculture (15.4%) than
for nonagriculture (37.1%), however commission errors
were higher for agriculture (41.6%) than nonagriculture
(13.1%). Overall accuracy within each class was highest
for the ‘‘other’’ class (81.7%), followed by dense shrubland
(76.7%), cultivated few stocks (74.9%), grassland few
stocks (65.8%), cultivated light stocks (62.4%), and culti-
vated moderate stocks (55.5%).
[19] Due to the variations in misclassification rates for

different land-cover classes, separate classification models
were fit individually for each class using moderate resolu-
tion classification, elevation and slope as predictors. The
threshold probabilities for classifying a pixel as cropped
were determined for each land-cover class to approximately
equalize omission and commission errors. These are shown
in Table 1. The classification results (Table 2) show the
impact of the variable classification thresholds on equaliz-
ing the two types of errors. The accuracy of the model
improves to 76.9% correct, in comparison to the 71.2%
correct using only the moderate resolution classification.
For individual land-cover class, the accuracy ranges from a
low of 63.0% for cultivated light to a high of 89.7% for
shrubland. Overall, the set of six models explained 33.6% of
the deviance (analogous to R Squared for logistic regression
models).
[20] Under cross validation the misclassification error rate

remains nearly the same, dropping slightly to 76.4%. The

Table 1. Threshold Probabilities for Classifying as Cropped

Land-Cover Class Probability

Cultivated few 0.69
Cultivated light 0.53
Cultivated moderate 0.46
Grassland 0.32
Shrubland 0.19
Other 0.39

Table 2. Classification Results

Land-Cover Class
Correct
Crop

Correct
Noncrop

Commission
Error

Omission
Error

Cultivated few 0.553 0.182 0.133 0.131
Cultivated light 0.335 0.276 0.192 0.178
Cultivated moderate 0.325 0.348 0.165 0.162
Grassland 0.077 0.703 0.111 0.108
Shrubland 0.023 0.873 0.054 0.050
Other 0.078 0.803 0.059 0.059
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Figure 2. Relationships between elevation and log of odds ratio.

Figure 3. Relationships between slope and log of odds ratio.
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cross validated predictions of total CA have an average bias
of 1.2% and a root mean square error of 3.9%.
[21] The relationships with the three predictors also

varied by land-cover class, although the general trends were
similar. The relationships with elevation are shown in
Figure 2. In all land-cover classes cropped, probability
increases with higher elevation up to approximately
2000 m, after which it tends to level off. The relationships
with slope (Figure 3) show monotonically decreasing log
odds ratio with increasing slope. In most cases, there is a
relatively rapid decrease moving away from flat areas,
followed by a less rapid decrease at higher slopes. The
relationships with moderate resolution classification are
positive in all land-cover classes (Figure 4) with moderate
resolution classification of CA, increasing the odds ratio by
a factor ranging between 1.6 and 2.1.
[22] Comparisons with district-level ground estimates are

presented in Table 3. Both sets of estimates correlate
generally well with the remote sensing estimates. The total
for the BoARD estimates matches much better with the
remote sensing estimates than do the CSA estimates. On
the basis of the cross validated RMSE of 3.9%, the range
for the remote sensing estimate is 3194–3460 which easily
includes the BoARD estimate but not the CSA estimate.

4. Discussion

[23] The intent of this study was to confirm the CA
numbers from one of the agencies. For our study area the
BoARD estimates were 40% greater than the CSA esti-
mates, creating large uncertainty in the production estimates
for the region. The confirmation of the BoARD estimate has
wide-reaching implications for Ethiopian government enti-
ties, such as the Ministry of Agriculture, The Disaster and

Preparedness Agency, the Ethiopian Trading Enterprise and
international agencies like the World Food Programme and
Famine Early Warning System Network which monitor
food insecurity in the country.
[24] The difficulty of obtaining concurrent high and

medium resolution imagery was a limitation and has been
resolved since the completion of this preliminary study. The
seasonal differences aided in interpretation of the medium
resolution imagery, while the annual differences were
assumed to be negligible. The assumption is valid, as
the 2005 and 2006 growing seasons were similar and well
above average in terms of CA and production. Other
periods have seen dramatic annual differences. For exam-
ple, large decreases in CA in 2001, followed years of
increased crop supply and price cuts. The robustness of
this method, particularly during below average years
remains an integral step in model development.

Figure 4. Relationships between moderate resolution classification and log of odds ratio.

Table 3. Comparison of Cropped Area Estimates (Thousands of

Hectares)

District BoARD Estimates CSA Estimates RS Estimates

Yem 13 14 10
Sidama 147 72 262
Gurage 144 81 241
N. Shewa 534 350 409
E. Shewa 608 470 566
W. Harerge 199 200 173
E. Wellega 414 309 326
Arsi 733 551 653
W. Shewa 639 426 683
Total 3465 2490 3327
R-square with RS 0.92 0.86
Slope with RS 1.06 0.76
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[25] Manual interpretation of the high and medium
imagery was a lengthy process (�3 man months), however
when considering the final goal of this research, which is
to implement the method in regional offices throughout
Africa, the cost-effectiveness and efficiency of using a
hybrid remote sensing model over traditional sampling
regimes is clear. The bias estimator developed here can be
used in future growing seasons with the latest free medium
and high resolution imagery for initial estimates, while a
more in depth analysis involving reevaluation of the bias
estimator to accommodate temporal uncertainties will fol-
low. Segmentation methods are currently being evaluated to
automate the classification process and thus further reduce
the time and cost of CA estimation. Segmentation has a
obvious advantage over spectral techniques, as it relies on
the structure and not the spectral separability of a given land-
cover class.
[26] Interpretation of the different variables used in the

logistic regression relates some of the important physical
factors to the probability of a location being cropped. From
the elevation variable we see that low elevations have a
reduced probability of being cropped, likely due to reduced
rainfall, increased temperatures, and increased disease risk.
As elevation increases, so does the probability of crop, until
at a little more than 2000 m there is a leveling off for almost
all land-cover classes. This represents the optimal blend of
precipitation and temperature, above which there is no
further improvement in probability of crop, and in some
land-cover classes we see a reduction above this elevation.
The slope variable shows the flat locations are the most
likely to be cropped; as the slope increases the likelihood
decreases. There is a steep drop in probability of crop from
0–5% slope, after which the slope contribution is steady
until steeper than 20% when the probability again starts to
drop dramatically. Classification of the moderate resolution
data shows a meaningful increase in probability of crop for
all classes, revealing that the characteristics of CA are
somewhat interpretable even without being able to distin-
guish specific features such as crop rows, field boundaries
or other items that distinguish crops in the high resolution
imagery.
[27] The ‘‘other’’ class is a conglomeration of land-cover

types. While it composed only 15% of the area covered by
the high resolution imagery, it made up nearly 40% of the
area covered by the Landsat data. So, while the percentage
error was small for the ‘‘other’’ class, even a slight im-
provement in the error percentage could result in a large
overall improvement because it is so much of the landscape.
As the component classes of the ‘‘other’’ invariably shift
outside the high resolution area, the model developed for
the high resolution area could be inadequate.
[28] Errors seen in the cross validated accuracy value of

76.4% are due primarily to misclassification and coregistra-
tion between satellite imagery, the DEM, and land-cover
maps. The relatively high commission and low omission
error for agriculture indicates that overestimation of agri-
culture is due to a large extent by classification of noncrop
as crop. Prior studies involving automated classification
techniques of medium resolution imagery have noted the
overestimation of CA as well, as spectral classifiers are
limited in determining unique signatures for mixed pixels. It
appears that the use of a manual technique with high

resolution imagery only marginally reduces high commis-
sion errors, when land-cover is not taken into account. This
reflects the idea that crop may look different on satellite
imagery or have different characteristics for different land-
cover. Although coregistration and misclassification errors
are reduced when aggregating points to district level esti-
mates of CA, the real advantage of this technique in
improving overall accuracy lies in the use of class-specific
thresholds. Treating the different land-cover classes inde-
pendently differentiates this study from previous research.
[29] The correlation between CA estimates of the two

published figures with the estimates in this study may be a
bit misleading. The difference in district size is partially
built into the R-square statistic presented in Table 3. Large
districts are likely to have large CA, while small districts are
likely to have small CA. However, errors in percent of area
cropped have different meaning for districts of different
sizes, with large percentage errors being less important for
small districts in determining the overall CA. When com-
paring the percentage of area cropped the R-square is still a
respectable 0.48, meaning that nearly half of the variability
in cropped percentage is captured with this method. Since
one of the goals of the study is to get an estimate of CA, it is
important to look at the slope between the two reported
figures and the method presented here. The slope for the
BoARD is quite close to 1.0, indicating that overall the bias
between the estimates derived in this study and those of the
BoARD are insignificant. The slope coefficient for the CSA
statistics is 0.76, indicating the CSA estimates are roughly
three-fourths of the estimates found in this study.
[30] Large differences between district estimates made in

this study and those of the BoARD can be attributed to the
distribution of high resolution images used to derive the bias
estimator. For example, Gurage and Sidama, which both
showed significant differences between BoARD estimates
and estimates made in the study, happen to fall in areas
which were quite far from the available high-resolution
imagery used to build the models in this work. The model,
therefore, may not be as representative in these locations.
Gurage and Sidama are also large-scale coffee producing
regions, suggesting that our models overestimate CA in this
land-cover type. Future efforts should be aimed at ensuring
a representative sample of high-resolution imagery is ac-
quired in order to build a model that adequately models all
possible landscapes found in the study area.

5. Conclusions and Implications

[31] This study defines a credible and objective method
for determining CA using remotely sensed interpretations of
high resolution (�1 m) and moderate resolution (�30 m)
satellite imagery, physical characteristics and land-cover
maps. High resolution imagery is used to remove bias in
cropped estimates derived from the interpretation of mod-
erate resolution imagery, given land-cover and DEM infor-
mation. The results of this study support the CA in Ethiopia
as estimated by the BoARD.
[32] Using land-cover specific thresholds to determine the

appropriate probability to define a point as crop, it is
possible to balance commission and omission errors when
applied over large areas. This results in providing an
unbiased crop percentage for each land-cover type over
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the area covered by the high-resolution imagery. As long as
the high-resolution imagery covers a representative sample
of the larger region extending this threshold to the entire
study region will lead to an improved, unbiased estimate of
CA. It is reasonable to assume that similar relationships
exist between slopes, elevation, and CA in regions outside
the primary crop producing zone, as the driving factors are
consistent throughout the country, however with improved
satellite coverage, the model should be evaluated in more
arid regions.
[33] This study presents a technique for estimation of

cropped area based on satellite imagery in a statistically
objective and timely manner. The results of this study for
Ethiopia in 2006 confirm one set of existing government
estimates. The impacts of this study show the promise for
timely and objective cropped area estimates in the future,
potentially reducing the debate over which estimates the
government and donor agencies use in the design of food
security programs and emergency response to a food crisis.
The concept of accepting one model for CA, as well as the
low cost and efficiency of it, would give local, national, and
international stakeholders more time to respond to food
insecurity and poverty reduction.
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