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Abstract:

Evaluating a range of scenarios that accurately reflect precipitation variability is critical for water resource applications.
Inputs to these applications can be provided using location- and interval-specific probability distributions. These distributions
make it possible to estimate the likelihood of rainfall being within a specified range. In this paper, we demonstrate the
feasibility of fitting cell-by-cell probability distributions to grids of monthly interpolated, continent-wide data. Future work
will then detail applications of these grids to improved satellite-remote sensing of drought and interpretations of probabilistic
climate outlook forum forecasts. The gamma distribution is well suited to these applications because it is fairly familiar to
African scientists, and capable of representing a variety of distribution shapes. This study tests the goodness-of-fit using the
Kolmogorov–Smirnov (KS) test, and compares these results against another distribution commonly used in rainfall events,
the Weibull. The gamma distribution is suitable for roughly 98% of the locations over all months. The techniques and
results presented in this study provide a foundation for use of the gamma distribution to generate drivers for various rain-
related models. These models are used as decision support tools for the management of water and agricultural resources as
well as food reserves by providing decision makers with ways to evaluate the likelihood of various rainfall accumulations
and assess different scenarios in Africa. Copyright  2006 Royal Meteorological Society
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INTRODUCTION

In order to improve the ability of African decision makers
to prepare for and deal with the consequences of precip-
itation anomalies, it is important to provide them with
a more complete understanding of the range and likeli-
hood of rainfall totals a location could possibly receive.
Models of rainfall probability distributions over various
timescales are useful tools for gaining this kind of under-
standing. Modeling rainfall variability in Africa presents
an imposing problem for many reasons, including the
need to summarize rainfall data for many years at many
sites and the difficulty in finding a single method to rep-
resent such a variety of rainfall regimes. Rainfall regimes
across the vast African continent differ widely in terms
of total accumulations, seasonal timing, and amounts of
variability. Any method that is applicable across this wide
range of conditions has to be quite flexible.

The typical approach to gaining a better understand-
ing of the spatial and temporal variability in precipitation
starts with the acquisition of historical rainfall data. These
historical data provide necessary information about accu-
mulation amounts in both time and space for the region
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and form the basis for fitting and testing distribution mod-
els. When historical data is unavailable in a region, or
available data is inaccurate or incomplete in a spatial
or temporal sense, geophysical models can be used to
‘fill in’ the missing values. These geophysical models
are based on available data at other locations and times,
as well as additional variables that add information to
the model. Assuming the historical values – recorded or
modeled – exist and are accepted as reasonably accurate,
it is possible to fit parametric statistical distribution mod-
els to rainfall histories at individual locations of interest.
Using a parametric distribution model allows for a more
stable and extensive analysis of the rainfall probabilities
than would be available using the raw data directly. The
resulting distributions describe the estimated probability
of different amounts of rain at a location for a select time
interval (e.g. annual, seasonal or monthly), based on the
historical values for that interval at that location.

There are many probability distributions that could
be successfully utilized to parameterize rainfall distri-
butions. The critical component for these distributions
is that they be flexible enough to represent a variety of
rainfall regimes. From a practical point of view, there is
little difference between many of the commonly used dis-
tributions when estimating parameters based on a limited
number of points, as is the case in much of the devel-
oping world. Of these available distributions, the gamma
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distribution is one of the more widely understood, mak-
ing it a good choice for implementation of this work in
developing countries.

Once the parameters of the distribution have been
estimated, they can be used to describe rainfall regimes
and be used in a variety of applications. The distribution
parameters might complement or even replace such
common measures as the median, variance, minimum,
maximum and quartile values as descriptors of the
rainfall at any location. For locating potential hazard
hotspots, distribution parameters may be used to identify
areas with a disposition towards certain precipitation
related hazards such as drought, flood, outbreak of
disease, or reliability in providing adequate water for
rain-fed agriculture. Monitoring of rainfall conditions
may use distribution parameters as the foundation for the
standardized precipitation index. Combining distributions
with probabilistic forecasts may result in a quantitative
estimation of seasonal rainfall accumulations.

The primary objectives of this research are to estimate
and evaluate distribution parameters that may be used
to describe the probability of monthly rainfall accumu-
lation for a location. More specifically, probability dis-
tribution parameters are estimated from monthly model-
derived historical rainfall values with a spatial resolution
compatible with current agroclimatic models, and the
goodness-of-fit of the parameters assessed. Direct inter-
pretation of these parameter estimates results in a broad
technique for the description of general rainfall regimes
for the entire continent. The result of this research is a
new portrayal of African rainfall utilizing these proba-
bility distribution parameters. In addition to the interpre-
tation of these parameters, description of potential uses
of the parameters in hydrologic resource modeling is
introduced. Probabilistic information can be utilized to
dynamically evaluate rainfall accumulations as well as
test different scenarios that can be used as input into
other models.

This paper quantifies the accuracy of gamma distribu-
tion grids actively used in applications for drought mon-
itoring in sub-Saharan Africa, where nearly one-third of
the population is undernourished (FAO, 2005a). Notably,
this work is currently in use as part of the standardized
precipitation index available at the Africa Data Dissem-
ination Service (http://earlywarning.usgs.gov/adds/) as
well as with probabilistic forecasts produced by Climate
Outlook Forums or by agencies such as the International
Research Institute. The gridded gamma distributions
described below are used to provide quantitative interpre-
tations of these forecasts, providing actionable informa-
tion for food security decisions (http://iri.columbia.edu/
africa/project/FSOFsGHA/).

DATA AND BACKGROUND
The collaborative historical African rainfall model
(CHARM)

In this study, the distributions are fit to historical
modeled rainfall at individual cells of the Collaborative

Historical African Rainfall Model (CHARM), a gridded
dataset developed to compensate for relatively poor
spatial coverage of reliable station data in Africa (Funk
et al., 2003).

The CHARM represents the synthesis of historical
reanalysis fields, a continental-scale digital elevation
model (DEM), and precipitation values based on inter-
polated station data. The reanalysis data provide a histor-
ically deep – if spatially coarse – dataset that allows the
CHARM to derive daily rainfall values for a recent 36-
year period (1961–1996). The reanalysis data is the result
of applying a state-of-the-art data assimilation process to
a rich library of quality controlled historical data (Kalnay
et al., 1996), and is used to disaggregate monthly totals
within the days of the month. The DEM provides a higher
spatial resolution (0.1 degree) than the reanalysis data,
and allows for the introduction of orographic processes
in the model (Funk and Michaelsen, 2004). This reso-
lution is also consistent with other satellite-based rain-
fall fields and related products routinely used in African
drought monitoring activities. Finally, the climatologi-
cally aided interpolated (CAI) rain gauge monthly accu-
mulations developed by Willmott and Robeson (1995)
are used to constrain the CHARM data so that monthly
accumulations of the daily CHARM data match the CAI
values in areas where there is no orographic enhance-
ment of rainfall. The CAI data are a well-documented,
gauge-based gridded dataset accumulated to monthly val-
ues. The result of these complementary datasets is a
set of daily rainfall grids with 0.1-degree resolution for
the years 1961–1996. Since the CHARM is matched to
the monthly station-based grids, the most reliable input
dataset, it follows that the monthly CHARM accumu-
lations be used for this research, although analysis at
shorter timescales is possible.

The resulting CHARM data reflects some of the
characteristics of the input data. Variability in rainfall is
relatively low in areas of the continent far from stations
(Funk and Michaelsen, 2004), for instance. However,
even with these shortcomings, the CHARM data is a
good fit for this project owing to the spatial, temporal
and financial characteristics of the dataset.

Utilization of the gamma distribution function

The representation of the likelihood of receiving a spe-
cific rainfall amount based on 36 (1961–1996) observa-
tions for a given interval is best accomplished by fitting a
parametric statistical distribution (Ison et al., 1971; Wool-
hiser, 1992). This parameterized distribution is a contin-
uous function allowing for a comprehensive analysis of
the rainfall based on the acquired sample.

With the available 36-year modeled history of rainfall
data, it is possible to fit parameterized statistical distri-
butions to the data, but first an appropriate distribution
must be selected. Much research has been carried out
related to fitting and evaluating statistical distributions
for rainfall. Juras (1994) discusses a number of stud-
ies that employed a variety of statistical distributions
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in an attempt to accurately fit precipitation data. These
distributions included the compound Poisson-exponential
distribution: the log, square root and cube-root normal
distributions, and the gamma distribution. In another such
summary, Woolhiser (1992) reviews studies applying var-
ious normalizing transforms, as well as the kappa and
Weibull distributions. Legates (1991) compared eight dif-
ferent statistical distributions for their goodness-of-fit to
station data from around the globe. This study found the
Box-Cox transformation to be a superior probability dis-
tribution function to employ for assessment of monthly
rainfall values. There seems to be ambiguity in the avail-
able literature regarding the superior distribution to use
when attempting to represent monthly rainfall values.

The gamma distribution is frequently used to represent
precipitation because it provides a flexible representation
of a variety of distribution shapes while utilizing only two
parameters, the shape and the scale (Wilks, 1990). Six
example gamma probability distribution functions, each
with a mean of 20, are plotted in Figure 1 to illustrate the
variety of shapes captured by the gamma distribution. In
addition to the gamma parameters, this research includes
a third parameter to describe the probability of zero
rainfall during the interval. A more complete description
of the estimation of the gamma distribution parameters
is given in Estimation of distribution parameters .

The gamma distribution is a good choice for describing
precipitation values for a variety of reasons. The first
advantage of the gamma distribution is that it is bounded
on the left at zero (Thom, 1958; Wilks, 1995). This is
important for precipitation applications because negative
rainfall is an impossibility, so a distribution that excludes
negative values is readily applicable. This is especially
important in dry areas or locations with high variability
but a low mean. Second, the gamma distribution is
positively skewed, meaning that it has an extended tail to
the right of the distribution. This is advantageous because

it mimics actual rainfall distributions for many areas
where there is a non-zero probability of extremely high
rainfall amounts, even though the typical rainfall may
not be very large (Ananthakrishnan and Soman, 1989).
Finally, the gamma distribution offers a tremendous
amount of flexibility in the shape of the distribution
function (Wilks, 1995). The gamma distribution may
range from exponential-decay forms for shape values near
one, to nearly normal forms for shape values beyond
20 (Wilks, 1990; Öztürk, 1981). This flexibility allows
for the gamma distribution to be fit to any number of
rainfall regimes with reasonable accuracy, while other
distributions may fit only a single, specific rainfall
regime.

Many studies have employed the gamma distribution
in the analysis of rainfall. Ison et al., (1971) examined the
relationship between the gamma distribution parameters
and rainfall accumulation period for three rain stations
in Kansas, USA. This study showed that the gamma
distribution parameters can be scaled to describe rainfall
for events of different duration. This is valuable because
it means that the gamma distribution is useful for
studying rainfall at a variety of timescales from multi-day
accumulations to seasonal accumulations.

The accuracy of the estimated gamma distribution
(with probabilities calculated from the estimated gamma
parameters) in matching the empirical distribution (the
empirical probability function based on the observations),
can be measured by comparing the cumulative distri-
bution functions of the estimated gamma and empirical
distributions (Wilks, 1995). In this research, maximum
likelihood estimators (MLEs) are employed to calculate
the shape and scale parameters for the gamma distribu-
tion. An alternative to the MLE parameters is the method
of moments estimation. It has been shown, however, that
the method of moments is a poor estimator, owing to
inefficiency, for small shape values (Wilks, 1990; Wilks,

Figure 1. A plot of six unique gamma distribution functions, all having a mean equal to 20. The plot shows the variety of distribution shapes
that can be represented by the gamma distribution.
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1995; Thom, 1958). Since this research seeks to accu-
rately fit as many regimes as possible, the MLE method
is used so as not to eliminate regions with small-scale
parameters.

The Kolmogorov–Smirnov test

Once the parameters are estimated, their accuracy in
approximating the true rainfall distribution must be con-
firmed. To do this, the estimated gamma distribution is
compared against the empirical distribution (Ison et al.,
1971). This can be done with the Kolmogorov–Smirnov
(KS) goodness-of-fit test (Crutcher, 1975). Because the
values being tested in this scenario are the same val-
ues being used in deriving the distribution parameters,
this test is sometimes also known as the Lilliefors test
(Wilks, 1995). The KS test compares the cumulative dis-
tribution functions of the theoretical distribution – the
distribution described by the estimated shape and scale
parameters – with the observed values and returns the
maximum difference between these two cumulative dis-
tributions (Wilks, 1995). This maximum difference in
cumulative distribution functions is frequently referred
to as the KS-statistic.

In this statistical test, the null hypothesis is that the
observed data are drawn from the chosen theoretical dis-
tribution. If the value of the KS-statistic is excessively
large, then the null hypothesis is rejected. A rejection
would imply that the distribution parameters are not
doing an adequate job of modeling the empirical distribu-
tion of rainfall at a location. The acceptable KS value for
rejection depends on the number of points in the empirical
distribution being used to test the theoretical distribution,
and the rejection level chosen for the study (Crutcher,
1975). Because the acceptable value of the KS-statistic
is variable, the confidence in accepting or rejecting the
theoretical distribution may be measured by the p-value,
which incorporates the number of values being used in
the test into the calculation of its value. A small p-value
is cause for rejection of the null hypothesis, while a p-
value larger than the selected significance level means
that the null hypothesis cannot be rejected (Wilks, 1995).

METHODOLOGY

Incorporating the occurrence of no rainfall

The general gamma distribution does not allow for val-
ues less than or equal to zero in the distribution, so the
probability of an event with no rainfall must be treated
separately. This conditional distribution – accumulation
probabilities conditional on the presence of rainfall – is
combined with a mixture coefficient used to account for
the probability of no rain to create the probability distri-
bution. Values of zero in the rainfall history are initially
excluded from the calculation of the shape and scale
parameters. In order to account for the occurrence of no
rain in the modeled history, this study uses an additional
parameter (q) in the theoretical distribution correspond-
ing to the probability of receiving no rainfall during the

interval. This probability of no rainfall is estimated by
counting the number of occurrences of zero (no) and
dividing it by the number of historical observations (n), as
shown in Equation (1). Since the CHARM data has a 36-
year history, n is equal to 36 for each single-month, but
may be less if a multi-month interval spans the December
to January period. The number of non-zero observations
in the n historical records, np , used in the estimation
of the gamma distribution parameters is defined as (n-
no) so that only the number of years with positive accu-
mulations are used in the gamma parameter estimation.
Additionally, the observations of zero are excluded from
the calculation of the mean and sum of natural log terms
as described in Estimation of distribution parameters.

q̂ = n0

n
(1)

If the number of zero values for a given geographic
location and interval is large, there are few non-zero val-
ues available to be used in the estimation of the gamma
distribution parameters. As q̂ increases from 0.0, the reli-
ability of the fit of the theoretical distribution to the
empirical values decreases. For example, at geographic
locations where q̂ is larger than 0.5, the gamma distri-
bution parameters are being estimated by fewer than 18
samples (out of 36 years) and the parameter reliability
becomes quite suspect. Research applying estimated dis-
tribution parameters suggests that over 30 years of data
be used in the estimation of parameters (McKee, 1993;
Hayes et al., 1999; Wu et al., 2001).

Estimation of distribution parameters

The gamma probability distribution function is shown
in Equation (2), where α is called the shape parameter
and β is called the scale parameter, and x represents a
rainfall amount. The complete gamma function (�(α))
(Equation (3)) can be solved or estimated from tables,
which can be found in most software packages.

f (x) = (x/β)α−1e−x/β

β�(α)
(2)

�(α) =
∫ ∞

0
e−t tα−1dt (3)

For this study, the gamma distribution parameters are
estimated through maximum likelihood estimation. The
calculation of the MLEs begins with the calculation of
an intermediate value A as shown in Equation (4) (Wilks,
1995; Ozturk, 1981; Thom, 1958), where xi is equal to all
non-zero values in the rainfall history, and the mean (x)
is the arithmetic mean of all non-zero values. The value
A then, is equal to the natural log of the mean minus the
mean of the natural logs of the non-zero accumulations
at a point. Ultimately, A is a measure of the skewness of
the distribution. This value is then used in the estimation
of the shape parameter, represented by α̂ (Equation (5)).
The scale estimator, β̂, is then the mean divided by the
estimated shape parameter (Equation (6)). Finally, the

Copyright  2006 Royal Meteorological Society Int. J. Climatol. (in press)
DOI: 10.1002/joc



USING GAMMA DISTRIBUTION TO REPRESENT MONTHLY RAINFALL IN AFRICA

product of the shape (α̂) and the square of the scale (β̂2),
is approximately equal to the variance (s2), given as the
mean of the sum of squared difference from the mean
(Equation (7)).

A = ln(x) −

np∑
i=1

ln(xi)

np

(4)

α̂ = 1

4A

(
1 +

√
1 + 4A

3

)
(5)

β̂ = x

α̂
(6)

α̂β̂2 ≈ s2 (7)

Analysis of these equations can be helpful in the
interpretation and understanding of how the rainfall
parameters describe the rainfall. Equation (6) can be
rewritten to show that the product of the parameter
estimates is equal to the mean of the non-zero values
in the rainfall history. The rewriting of Equations (6)
and (7) can aid in providing some intuitive understanding
of the rainfall distribution at any point.

These calculations are performed for each 0.1-degree
by 0.1-degree grid cell in the CHARM data array. The
results can be displayed as maps of the estimated param-
eters for each monthly accumulation period. These MLE
parameters describe the rainfall probability distribution of
the CHARM dataset at each grid cell for non-zero rainfall
amounts.

Implementation of the KS test

Once the gamma distribution parameters are estimated,
they should be evaluated to understand how accurately
they reflect the historical data, and therefore represent
the modeled probability of rainfall for a location. The
KS test offers a straightforward method for assessing
the relationship between the empirical distribution and
the estimated distribution, leading to either acceptance or
rejection of the null hypothesis.

As used here, the null hypothesis of the KS test is
that the sample – the rainfall history in this case – is
taken from the theoretical gamma distribution, with
parameters as estimated in Equations (4)–(6). Selection
of an acceptable rejection level is arbitrary. For this
research, we use a rejection level of 0.10, meaning
that we reject the null hypothesis that the theoretical
distribution is performing adequately in modeling the
historical values, at locations with p-values less than
0.10.

The KS test compares the empirical and theoretical
cumulative distributions and returns the absolute value of
the largest difference between them. This is mathemati-
cally described in Equation (8) (Wilks, 1995). In Equa-
tion (8), Dn represents the maximum difference between
the empirical and theoretical distributions over all real
numbers y, and is referred to as the KS value; Fn(y) is

the empirical cumulative probability of observing a value
less than or equal to y as shown in Equation (9), where
1/np is added for each observation (yi) that is greater than
zero and less than or equal to y; F(y) is the theoretical
cumulative probability at y described by the estimated
gamma distribution parameters (α̂, β̂) shown in Equa-
tion (10).

Dn = max
y

|Fn(y) − F(y)| (8)

Fn(y) = #({i ∈ {1, 2, . . . , n} : yi ≤ y})
n

(9)

F (y) =
∫ y

0
f (x)dx = 1

β̂α̂�(α̂)

∫ y

0
xα̂−1e−x/β̂dx

(10)

Intuitively, a smaller value of Dn means a better
fit between the observed and theoretical distributions
for a fixed number of observations (n). Also, having
a larger number of points in the empirical distribution
usually creates a smoother cumulative function curve
and eliminates the large vertical jumps associated with
empirical curves based on only a few points. The p-
value measures the confidence that the empirical data
are taken from the theoretical distribution based on
the Dn result and factoring in the number of samples
into its calculation. In other words, it is a measure
of the probability of achieving a test statistic, Dn, at
least as large as the observed measure assuming the
null hypothesis, given the number of samples used in
estimating the parameters. A location with more samples
in the historical dataset has a smaller KS test statistic
(Dn) associated with the same p-value. Similarly, if two
locations have the same KS test statistic value, the one
with fewer samples has a larger p-value (Wilks, 1995;
Siegel, 1956).

The KS test was applied at every pixel in the CHARM
grid which recorded at least two non-zero rain events
during the monthly interval. The exact number of points
tested changes depending on the month because the
number of gridcells that receive no rainfall in a month
varies throughout the year. The estimated parameters at
each site were used to estimate the theoretical distribution
and compared to the empirical cumulative distribution
function from the CHARM monthly rainfall from the
same location.

RESULTS AND DISCUSSION

This section highlights the important findings of this
research and describes the relevant implications for
understanding rainfall in Africa. Since this study relies
heavily on modeled data for the results, a note about this
would be appropriate. Any use of the CHARM dataset
must acknowledge the limitations of the model, which
should be used to guide the application of the dataset.
The CHARM model is designed to estimate precipita-
tion by combining various inputs to create an output
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representing a synergism of the positive characteristics
of the input datasets. It is not designed to be spatially
explicit, and therefore quantitative analysis should be per-
formed for areas rather than at individual points. The
CHARM has been shown to approximate precipitation
with reasonable accuracy (Funk et al., 2003). With these
limitations in mind, caution must be used in the inter-
pretation of the outputs presented here. Another related
issue is the systematic impact that station distribution
has on the temporal variance of interpolated fields. Most
interpolation schemes employ, in essence, some type of
weighted average of the points surrounding a location.
This averaging influences the temporal variance in com-
plex ways, with locations near stations typically varying
more from time-step to time-step. Still, gridded data and
gridded distributions are useful in many applications.

Interpretation of the distribution parameters

Proper interpretation of the gamma distribution param-
eters requires some understanding of the distribution
properties. Unlike the normal distribution where a sin-
gle parameter, such as the mean or standard deviation
can directly provide an intuitive understanding of some
aspect of the distribution, the gamma distribution requires
that both the shape and scale parameters be interpreted
together. Areas with similar shape values, but different
scale values, have very different probability density func-
tions describing the rainfall.

A conceptual understanding. The shape parameter
describes the form of the curve. Distributions with a
low shape parameter are positively skewed, and as the
shape value increases the distribution curve becomes
more symmetrical. Rewriting Equations (6) and (7) of the
gamma distribution, it is possible to find that the square
root of the estimated shape parameter is equal to the mean
of the non-zero observations divided by the standard
deviation (i.e. the inverse of the coefficient of variation).
In general terms, this means that a wet area (i.e. one

with a large mean) with a relatively small variance has a
large estimated shape parameter, while a dry area with a
relatively high variance results in a small estimated shape
parameter.

In estimating the scale parameter earlier, we used
Equation (6), which can be rewritten to show that the
product of the estimates of the shape and scale is equal
to the mean of non-zero observations (x), as shown in
Equation (11). The variance of the gamma distribution
is the estimated shape (α̂) multiplied by the square
of the estimated scale (β̂) parameter (Equation (7)).
Manipulation of these two equations reveals that the scale
(β̂) parameter is approximately the variance divided by
the mean (Equation (12)). So large-scale (β̂) values may
indicate relatively high variance in a dry region (low
mean), and small-scale (β̂) values may indicate relatively
little variance in wet areas.

α̂β̂ = x (11)

β̂ ≈ s2

x
(12)

The mapped parameters provide some spatial context
to the rainfall values and distributions. In the evaluation
of the parameter fields, it becomes apparent that areas
receiving a minimal amount of rainfall are described by
either a large shape parameter or a large-scale parameter,
but not large values in both parameters. This discussion
uses the term ‘shape-dominated’ rainfall to refer to
locations with a larger shape parameter, and ‘scale-
dominated’ rainfall to refer to locations with a larger scale
parameter. Figure 2 shows a conceptual graphic with the
shape and scale parameters on the x-axis and y-axis,
respectively. The axes on this graphic are not numerated
as the concept of ‘small’ and ‘large’ values may vary in
time and space. This graphic provides an idea of how the
parameters describe regimes. Areas in the ‘low rainfall’
region of the plot describe regions that are typically arid
during the interval of analysis. The empty area in the

Figure 2. Conceptual regimes described in parameter space with the shape parameter (α) on the x-axis and the scale parameter (β) on the y-axis.
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graph indicates that areas with at least a minimal amount
of rainfall are in either the ‘shape-dominated’ or ‘scale-
dominated’ category.

A shape-dominated regime describes a pattern where
the rainfall tends to be symmetrically distributed, indi-
cating that drier-than-average events are as common as
wetter-than-average events. This tends to describe areas
that typically receive consistent rainfall accumulations in
the historical record. Additionally, using Equation (6), if
mean rainfall is held constant, a larger α̂ value results
in a smaller β̂, meaning less variance in the distribution
function according to Equation (7). For areas with simi-
lar means, a shape-dominated regime indicates a tighter
distribution of rainfall around the median than a scale-
dominated regime.

Scale-dominated rainfall describes locations where the
variance is quite large in comparison to the mean.
Again, if the mean rainfall is held constant, as the scale
increases the shape parameter must decrease resulting
in a more positively skewed distribution function (from
Equation (6)). However, if the shape parameter is held
constant, as the scale increases there is a larger mean
along with a larger variance. This illustrates that both
the shape and scale parameters must be interpreted when
comparing the rainfall distributions of two locations, as
the comparison of only a single parameter can lead to
erroneous conclusions about the rainfall at each place.

A spatial analysis. Interpretation of the parameter grids,
as shown for January in Figure 3, yields some general
observations regarding the spatial distribution of the
parameters.

Large shape values tend to follow the Inter-tropical
Convergence Zone (ITCZ) through each of the monthly
maps. This makes intuitive sense because these locations
receive relatively large and consistent rainfall when the
ITCZ is present. In these instances, the increase in the
average rainfall would lead to a lower variance relative to
the mean (but not necessarily a lower absolute variance),
and since the product of the shape and scale must
equal the mean, if the scale decreases then the shape
must increase, in order to preserve a constant mean.

A high shape value also means that the distribution
curve is getting more symmetrical, as shown in Figure 1,
and that the probability of events drier-than-average is
approximately equal to the probability of events wetter
than average.

In addition to large shape values in the ITCZ, there
also appear to be some artificially inflated values in
areas surrounding major desert regions. These locations
are areas with a high probability of no rain, and the
parameters are calculated based on only a few positive
values. If the small number of years receiving rain
received the same or nearly the same accumulation during
those wet years then the alpha parameter is artificially
inflated as the value A from Equation (4) approaches zero
and results in a large shape value. These locations are
represented by a low-variance, bell-shaped distribution
where all probabilistic realizations of rain, based on the
historical data, are covered by only a few values. It is
possible to screen these locations to remove any potential
for misunderstanding, but by using the spatial context as
well as the information provided by the other parameters
it is possible to understand what occurs at these locations
without misleading the user.

Scale-dominated rainfall frequently appears on the
perimeter of the ITCZ where rainfall is more variable.
This variability is largely owing to fluctuations in the
procession of the ITCZ across the continent. As the
ITCZ moves throughout the season, it may stall in
some locations for extended periods of time, and then
advance quickly through other regions. These irregular
movements may give one location heavy rainfall for an
extended period of time while causing another to have
an abbreviated rainy season. The affect of a location
receiving some wet years and some dry years leads to
a large variance in the sample, and thus a large-scale
value.

Implications for the occurrence of rainfall. By com-
bining the conceptual figure (Figure 2) with the mapped
parameters (Figure 3), it is possible to create a classified
map based on simple rules that can locate areas where
occasional drought may have an impact on agriculture in

Figure 3. The shape (left), scale (center) and no rain (right) parameters for the month of January.
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southern Africa. This exercise is designed as a straightfor-
ward example of an application of distribution parameters
in defining potential hazard zones. Four classes were cre-
ated defining extremely wet areas (mean January rainfall
over 250 mm), regularly dry areas (mean January rainfall
less than 50 mm), shape-dominated and scale-dominated
rainfall. By first classifying areas that are either quite
wet or quite dry, the shape and scale classification is
only applied to those areas where rainfall amounts are
in a critical range for supporting agriculture, and where
drought conditions could have large effects on food secu-
rity. This map (Figure 4) points out the scale-dominated
regimes that are likely to have large variability in rainfall
and result in irregular rainfall totals for January. Using
the parameters in this way, it is possible to identify areas
that are prone to dryness and drought-related issues. The
countries highlighted in this map (Angola, Mozambique,
Zambia and Zimbabwe) are all below the regional aver-
age in percentage of undernourished population (FAO,
2005b).

Establishing the connection between the estimated
distribution parameters and the occurrence of extreme
events is one of the primary objectives of this research.
Generally speaking, areas with scale-dominated rainfall
would experience more extreme and abnormal events.
These areas have quite a range of rainfall amounts
received, and need to have infrastructure and plans
established to cope with extremely dry or wet conditions.
Areas with shape-dominated rainfall, on the other hand,
may experience more rain and may also have a larger
absolute variance, but the large shape value indicates
a relatively consistent accumulation from year to year.
These generalizations allow for an interpretation of
parameter values to be translated into conceptual regimes.
Additionally, the parameters can provide an insight into

Figure 4. Results of decision-tree classification based on distribution
parameters.

the suitability of an area in providing adequate rainfall
for crops.

Defining ‘extreme’ is quite dependent on the particular
use of the term. Farmers or decision makers concerned
with crop health may be more concerned about the
probability of no rainfall and dry events, as these are
primary threats to productive agriculture. On the other
hand, transportation managers may be more concerned
with wet events and their ability to disrupt railway or
automobile transportation. Finally, dam and hydroelectric
engineers may be concerned with both wet and dry events
to make sure that their waterways do not overflow their
boundaries, while also keeping water in reserve to last
through dry periods. The definition of extreme is different
for each of these groups of people, but the combination
of the probability of no rainfall and the gamma shape
and scale should help affected individuals define the
probability of catastrophe related to extreme rainfall.

KS test

The KS test was run using all points in the monthly
subsampled data that contained more than one rainfall
value in the climatological history. The results from this
are displayed in Table I. A rejection level of 0.1 was
used to test the rejection of the gamma distribution as
suitable for parameterizing the CHARM record. For this
data, including the points from all months, only 3.8% of
points with at least two non-zero rainfall events in the
36-year history had a calculated p-value smaller than the
0.1 threshold (column 6 of Table I).

This test included points with very few rainfall values
that tend to have a very high KS-statistic associated with
them. To check how the inclusion of points with only a
few rainfall values in the history negatively affected the
overall statistics the test was performed again including
only points that had rain in at least half of the history (a
value of q̂ less than or equal to 0.5). Results for this are
shown in Table II.

As expected, the average value for the KS-statistic
(Dn) was reduced – by roughly a third – when including
only points with over 17 values in the history. However,
this reduction in the KS-statistic did not translate into
a large increase in the average p-value. This is due
to the fact that as more samples are included in the
empirical dataset, the acceptable value of the KS-statistic
becomes smaller. There was a notable improvement in
the percentage of points with a p-value greater than 0.1.
Of all points meeting the testing criteria, 98.5% had a
p-value greater than 0.1, meaning that we do not reject
the gamma distribution for 98.5% of the tested sites. If
the more common threshold of 0.05 is used, the level of
acceptance improves to 99.5% of all points with over 17
non-zero rainfall values.

This test shows that, overall, the gamma distribu-
tion appears to do an adequate job of approximating
the historical rainfall distributions. To test how well the
gamma distribution approximates the sampled data, it
was compared with similar tests for the Weibull distri-
bution. Results show that at the 0.1 rejection level, the
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Table I. Results from KS test using all subset points with rainfall during the climatology.

Month Mean
p-value

Mean
KS
stat

# of
points

Points
<0.10

%
>0.10

Points
<0.05

%
>0.05

Jan 0.6712 0.181 240 158 7 187 97.00 4586 98.09
Feb 0.6573 0.1783 234 527 10 277 95.61 7104 96.97
Mar 0.6618 0.1738 272 306 8 275 96.96 5040 98.15
Apr 0.6833 0.1786 283 612 8 657 96.94 6031 97.87
May 0.6529 0.1959 287 592 9 596 96.66 5934 97.94
Jun 0.631 0.2271 242 923 14 530 94.01 10 775 95.56
Jul 0.639 0.2067 219 988 10 383 95.28 6835 96.89
Aug 0.6305 0.2077 242 234 12 493 94.84 8219 96.61
Sep 0.6379 0.1984 264 040 11 809 95.52 7304 97.23
Oct 0.667 0.1833 284 573 7 758 97.27 4307 98.49
Nov 0.6822 0.1762 252 172 8 282 96.71 5327 97.89
Dec 0.6793 0.1803 241 737 6 982 97.11 4664 98.07

Table II. Results from KS test using only subset points with more than 17 rainfall values.

Month Mean
p-value

Mean
KS
stat

# of
points

Points
<0.10

%
>0.10

Points
<0.05

%
>0.05

Jan 0.6941 0.1228 164 827 2178 98.67 615 99.63
Feb 0.6964 0.1226 176 800 2832 98.39 969 99.45
Mar 0.6845 0.1221 204 438 2956 98.55 970 99.53
Apr 0.7167 0.1176 207 333 1943 99.06 605 99.71
May 0.6916 0.1245 176 025 2226 98.73 563 99.68
Jun 0.6561 0.1299 134 481 2930 97.82 970 99.28
Jul 0.662 0.1282 130 712 2785 97.86 1018 99.22
Aug 0.6568 0.1288 146 066 3330 97.72 972 99.33
Sep 0.6628 0.1274 164 831 3492 97.88 1123 99.32
Oct 0.6881 0.124 191 325 2808 98.53 818 99.57
Nov 0.7151 0.1194 183 292 1713 99.06 491 99.73
Dec 0.7142 0.12 167 385 1596 99.04 509 99.70

performance of the gamma and Weibull parameter esti-
mation techniques are quite comparable.

Given the similarities in the performance of the param-
eters in representing the samples, there are a few reasons
to choose the gamma distribution over the Weibull. First,
functions to define probabilities from gamma parameters
already exist in many programming languages, while this
is not the case for the Weibull distribution. Secondly, the
MLEs are easier to calculate than the Weibull, reducing
computation time when working with such a large grid.
Finally, despite their complexity the gamma parameters
are a bit more intuitive and interpretable, as well as more
widely understood, for decision makers wishing to char-
acterize their rainfall regimes. In the absence of a clearly
superior distribution, these reasons support the decision
of using the gamma distribution parameters to represent
the rainfall probabilities for a given interval.

SUMMARY AND CONCLUSIONS

In summary, this study presented calculations of rain-
fall parameters for the gamma distribution using the

maximum likelihood estimates. The joint interpretation
of monthly shape and scale parameters conveys the dis-
tribution of values in the modeled rainfall data at each
location on the continent allowing the interpreter a qual-
itative assessment of the amount and stability of rainfall
throughout the season. These parameters reflect the mod-
eled rainfall, and as such also contain errors inherent in
the modeled history.

The ability of the gamma distribution and parameter
estimates to adequately fit the empirical distribution of
values in the modeled history was tested using the KS
goodness-of-fit test. This test showed that the gamma
distribution and the estimated parameters could not be
rejected as a suitable distribution for the CHARM his-
torical data at a 0.10 confidence level for the major-
ity of points on the continent. When considering only
points that received rainfall for at least half the data his-
tory, the percentage of points that were acceptable at the
0.10 level increased slightly. This hypothesis testing indi-
cates that the gamma distribution provides a reasonable
description of the empirical rainfall probability distribu-
tion. The ability to represent the rainfall using the gamma
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distribution parameters allows for interpretation of the
parameter estimates as a compact summary of the full
rainfall distribution.

Through analysis of the distribution parameters, it is
possible to examine the likelihood of an area receiving
rainfall amounts that would cause flooding, wash out
dams or provide sufficient water to support crops. On
the dry side of the distribution function, it is possible to
understand quantitatively the range of possible drought
scenarios that may occur at a location. The method
implemented in this study is especially important in areas
with spatially or temporally incomplete records, as is the
case in Africa, because it allows for a more complete
estimate of rainfall likelihood, given only a few records
over a very large area.

The ultimate application of the information presented
in this paper reveals the true value of this research. The
types of applications could be generalized into two cat-
egories, those monitoring the existing conditions against
the distribution, and those using the distribution to gener-
ate forecasts. One apparent monitoring application of the
work presented here is the development of a continent-
wide standardized precipitation index using near real-time
rainfall estimates. In fact, a variety of monitoring tools
based on the likelihood of the occurrence of observed
events could be developed to estimate the impacts. An
example of a forecast application would be to use the
distribution information to develop rainfall scenarios that
could drive agroclimatic models to assess typical crop
conditions or end-of-season expectations for a region.
These types of models could prepare decision makers
for ‘likely’, ‘best case’, or ‘worst case’ scenarios to help
them mobilize relief in a timely manner. Another exam-
ple is to apply the distribution information at a watershed
level to provide quantitative scenarios of rainfall volume
and runoff granting information to hydrologic decision
makers about how to manage available resources. Use of
probability distributions in this way is certainly a future
avenue of research.

Overall, this research shows how describing rainfall
using a parametric distribution with parameter estimates
fit to historical data increases the quality of the informa-
tion about the rainfall history of an area. This research
could prove valuable to a wide range of groups from
scientists studying precipitation, to policy makers assess-
ing forecast information, to local farmers estimating their
crop yields.
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