CHIRPS v2.0 will be released late January 2015.

What is CHIRPS?
Latest Preliminary CHIRPS v1.8 Africa Pentad

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a 30+ year quasi-global rainfall dataset. Spanning 50°S–50°N (and all longitudes), starting in 1981 to near-present, CHIRPS incorporates 0.05° resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis and seasonal drought monitoring. As of May 1st, 2014 version 1.8 of CHIRPS is complete and available to the public. For detailed information on CHIRPS, please refer to our paper on the USGS website.

History and Intent

Since 1999, U.S. Geological Survey (USGS) and CHG scientists, supported by funding from the U.S. Agency for International Development (USAID), the National Aeronautics and Space Administration (NASA), and the National Oceanic and Atmospheric Administration (NOAA), have been developing techniques for producing rainfall maps, especially where surface data is sparse.

Estimating rainfall variations in space and time is an important aspect of drought early warning and environmental monitoring. An evolving dryer-than-normal season must be placed in historical context so that the severity of rainfall deficits may be quickly evaluated. However, estimates derived from satellite data provide areal averages that suffer from biases due to complex terrain which often underestimate the intensity of extreme precipitations events. Conversely, precipitation grids produced from station data suffer in more rural regions where there are less rain gauge stations. CHIRPS was created in collaboration with scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in order to deliver reliable, up to date, and more complete datasets for a number of early warning objectives (such as trend analysis and seasonal drought monitoring).

Early research focused on combining models of terrain-induced precipitation enhancement with interpolated station data. More recently, new resources of satellite observations such as gridded satellite-based precipitation estimates from NASA and NOAA have been leveraged to build high resolution (0.05°) gridded precipitation climatologies. When applied to satellite-based percipitation fields, these improved climatologies can remove systematic bias, a key technique in the production of the 1981 to near-present CHIRPS dataset. The creation of CHIRPS has supported drought monitoring efforts by the USAID Famine Early Warning Systems Network (FEWS NET).

GET ADDED TO OUR USERS LIST: If you would like to recieve updates on CHIRPS processing/validations/publications etc., send an email to
Data (ftp)

Two CHIRPS products are produced operationally: a rapid preliminary version, and a later final version. The preliminary CHIRPS product is available, for the entire domain, two days after the end of a pentad (2nd, 7th, 12th, 17th, 22nd and 27th). The preliminary CHIRPS uses only a single station source, GTS. The final CHIRPS product takes advantage of several other stations sources and is complete sometime after the 15th of the following month. Final monthly, dekad, pentad and daily products are calculated at that time.

Updated regularly at: CHIRPS-latest (


The FAQ for CHIRPS can be found on our wiki.

Suggested Tools
Affiliated Organizations

To cite this dataset, please use:

Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros, D.H., Verdin, J.P., Rowland, J.D., Romero, B.E., Husak, G.J., Michaelsen, J.C., and Verdin, A.P., 2014, A quasi-global precipitation time series for drought monitoring: U.S. Geological Survey Data Series 832, 4 p.,

See "A Quasi-Global Precipitation Time Series for Drought Monitoring" for citations used in developing and reporting on CHIRPS.


The Climate Hazards Group InfraRed Precipitation with Stations development process was carried out through U.S. Geological Survey (USGS) cooperative agreement #G09AC000001 "Monitoring and Forecasting Climate, Water and Land Use for Food Production in the Developing World" with funding from: U.S. Agency for International Development Office of Food for Peace, award #AID-FFP-P-10-00002 for "Famine Early Warning Systems Network Support," the National Aeronautics and Space Administration Applied Sciences Program, Decisions award #NN10AN26I for "A Land Data Assimilation System for Famine Early Warning," SERVIR award #NNH12AU22I for "A Long Time-Series Indicator of Agricultural Drought for the Greater Horn of Africa," The National Oceanic and Atmospheric Administration award NA11OAR4310151 for "A Global Standardized Precipitation Index supporting the US Drought Portal and the Famine Early Warning System Network," and the USGS Land Change Science Program.